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Introduction

From data we qualitatively document and discuss two dif-
ferent modes of evolutionary processes across multiple sys-
tems. Evolutionary optimization is associated with con-
served fundamental interaction types, where fitness im-
provements are distributed homogeneously on a logarithmic
time axis and fitness consequently increases at a decelerat-
ing rate. Evolutionary expansion is associated with a grow-
ing number of fundamental elements and interaction types,
and the resulting fitness improves at an accelerating rate.
The same system may operate in both evolutionary modes at
different times and/or in different regions of its configuration
space.

Evolutionary optimization

Spin glass and E. coli monoculture evolution: Physical
glassy systems have clearly fixed constituents and interac-
tions. After a sudden change of external parameter, e.g. a
temperature decrease in spin-glasses or a density increase
in hard-sphere colloid, they visit a series of increasingly
long-lived metastable states in a process called ‘aging’. The
salient non-equilibrium events marking the transitions from
one metastable state to the next may be called ‘quakes’
and are distributed homogeneously on a logarithmic time
axis [7]. The quake dynamics F'(t) can be expressed in di-
mensionless units as

F(t) = A—t7*=A—e""") ~ A + aln(t)
= aln(Kt) = In(I(t)“) (1)

where A is the asymptotic equilibrium state, o defines the
decelerating dynamics (we have expanded the logarithm),
and where A" = In(K®), see Fig. 1. In this formalism we
may interpret I(¢) as related to the number of components
and interactions in the system, which is constant dI(t)/dt =
K as they are in a spin glass. It should be noted that the
value of « is neither universal across systems nor within the
same system of different size or with different environmental
conditions (e.g. temperature).

Lenski and Travisano [2] measured cell size and Malthu-
sian fitness of cultures of E. coli grown in a constant envi-
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Figure 1: Optimization dynamics in a spin glass shown by
the number of quakes as a function of time. Note how the
quakes are distributed homogeneously on a logarithmic time
axis.

ronment. Our analysis of their data shows that the evolu-
tionary dynamics of a bacterial monoculture also seems to
be distributed homogeneously on a logarithmic time axis. If
we identify quakes as the mutations with a fitness impact,
the dynamics seem to belong to the same universality class
as ageing physical systems and we may interpert the fun-
damental interaction types within the bacterial monoculture
as being constant over time. This means that both the in-
ternal cellular biochemical ecology of interactions and the
cell-cell interactions should be of qualitatively similar types
over time. This seems to be a reasonable assumption al-
though we have not provided any detailed specification of
the involved interaction types. In this context, however, it is
still an open question how to interpret A and « as expressed
in equation (1), so that these parameters could be compared
across and within systems. How would « e.g. vary across
different biological organisms?

Biological macro-evolution after the Cambrian explosion
is also characterized by a logarithmic time growth of the cu-



mulated number of extinctions [3], a feature mirrored by an
agent based model of ecological evolution [1]. Evolutionary
optimization processes are frequently reported in both the
Artificial Life and the Machine Learning litterature.
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Figure 2: Upper panel: Evolutionary fitness optimiza-
tion (normalized) of an E. coli monoculture after an initial
change of food substrate depicted as a function of time. All
12 experiments are included where change in average cell
size is measured. Lower panel: Same dynamics depicted
as a function of logaritmic time where the average over the
12 fitness experiments is used. The dynamics is depicting
the number of quakes as a function of time. Note how the
quakes are distributed homogeneously on a logarithmic time
axis for the processes both in Figs 1 and 2 while « differs.

Evolutionary expansion

Human cultural and technological evolution: The evolu-
tion of human technology is different from the above exam-
ples, because qualitative changes and expansions of human-
human and human-technology interaction patterns are com-
monplace. This means an expansion of new components and
interactions as expressed by I(t) although we shall not spec-
ify the details of these growing interactions. We assume we

can use the accumulated wealth production, the gross do-
mestic product per capita per year GDP(?), as a proxy mea-
sure for human fitness over time. The growth of the GDP(¢)
is mainly the result of technological evolution of both the
physical technologies (e.g. hammer and nail, steam engine,
computers, internet) and the social technologies (e.g. gov-
ernance, institutions, laws, education, religion, myths, so-
cial norms). Examples of areas within which qualitatively
different and increasing interaction components and types
have emerged include communication, transportation, pro-
duction, energy, education, governance and religion, thus
both physical and social technologies. Over the last two
centuries new interaction types e.g. within communication
include introduction of the telegraph, the telephone, the TV,
and the Internet, transportation includes introduction of the
rail road, the automobile and the airplane, while governance
includes democracy and women’s rights to vote. All of these
and many more new technologies have generated radical so-
cietal changes and increased the overall fitness/capita.

We further assume human fitness evolution to have both
an optimization and an expansion component.

To quantify the difference between a baseline evolutionary
optimization and the evolutionary expansion for GDP(t), we
may find an expression for I(t) by using the same ansatz as
in equation (1) and detrending the time series for GDP(t). In
previous section we learned to express the fitness evolution
as a function of log(I(t)), because log(I(t)), and not ¢, is
expected to be the natural variable for the ongoing optimiza-
tion process for any given set of interaction, while a change
of I(t) over time ¢ should express the ongoing expansion
process. In the following we use data form England form
1270 till today 2017 [4].

Detrending the English GDP(¢) timeseries we get

GDP(t) ~ P )
and using the ansatz from equation (1) we get

GDP(t) ~ In(I(t)*) ~ef® &
I(t) ~ e/, 3)

where P(t) is estimated to be a best fit 3 order polynomial,
where the goodness of the fit does not change significantly
using higher order polynomials. At present we do not have
an independent (microscopic) theory to estimate the evolu-
tionary expansion expressed through I(t), and in the pre-
vious section we learned that o is expected to vary across
and within systems. This means that o cannot be uniquely
derived from data. We imagine the double exponential ex-
pansion of I(t) expresses a combinatorial explosion among
the human-human, human-technology and the technology-
technology interactions, where the details still have to be
worked out. For the quantitative estimates shown in Fig 3
(lower panel), we have used o = 1.0.
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Figure 3: Upper panel: In(GDP(t)) and P(t) (trend) as a
function of time. Evolution of human wealth per year per
capita GDP(¢) for England years 1270-2017 is used as a
proxy for human fitness. In these data the Black Death is
notable due to a significantly decimated population, which
is reflected in a wealth growth of the survivors. Wealth ex-
pansions are seen at the onset of the Colonial Period and
even more dramatically as the Industrial Revolution takes
off. Also note the long period of relative wealth stasis during
the Middle Ages. P(t) is estimated as a best 3™ order poly-
nomium trend fit for the In(GDP(¢)) data. Lower panel: Log-
Log plot of the evolutionary expansion expressed through
(normalized) GDP as a function of In(I(¢)), where I(t) ~
et/ a)eltt) and « is a constant, see text for details. The line
corresponding to o = 1.0 is also shown. Note that by apply-
ing the ansatz from equation (1) on our data we can obtain a

quantitative estimate for the evolutionary expansion through
I(t).

An expansion of I(¢) over time is of course not limited to
complex ecosystems and sociotechnical systems. Even in a
simple protocellular system, events that increase the physic-

ochemical complexity could increase the number and qual-
ity of interactions and thus I (¢). We have previously demon-
strated this in self-assembly of dynamical hierarchies [5] and
we have proposed how to expand I(t) for a protocellular
system that has already obtained the ability for evolutionary
optimization [6].

Discussion

Strikingly, systems of very different nature feature similar
evolutionary traits: the cumulated number of salient evo-
lutionary events, or quakes, grows logarithmically in time
for complex physical and simple biological systems. The
process itself can be understood as an optimization process
in the complex configuration space of systems with given
components and interactions. This optimization mode of
evolution is complemented by an expansion mode, where
new agents and interactions are introduced. The evolution-
ary expansion can be quantified as the difference away from
a baseline optimization process with one free scaling param-
eter. To eliminate this parameter we need an independent
microscopic theory for either the evolutionary optimization
or expansion processes. Open-ended evolution is in a fun-
damental way associated with processes that at least sporad-
ically have evolutionary expansion epochs.
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