
How Novelty is Created in a Web Service

Takashi Ikegami1†, Mizuki Oka2 and Yasuhiro Hashimoto1

1Department of General Systems Studies, The University of Tokyo, Tokyo, Japan

(E-mail: ikeg/hashi@sacral.c.u-tokyo.ac.jp)
2Department of Computer Science, Tsukuba University, Tokyo, Japan

(E-mail: mizuki@cs.tsukuba.ac.jp)

Abstract: A mechanism of generating novelty is studied in a web service. Analogous to living ecosystems in nature, web

services form an artificial ecosystem consisting of many agents. Both systems develop new species (tags in case of a web

service), new taxa (communities in case of a web service) and new niches (topics in case of a web service). In the previous

works [1], using the network Hawkes process, we have found that a web service evolves to a point close to the edge of

critical point. Here we show that a community of homogeneous users using the same tag patterns, is good at creating new

tags. The formation of such community structure may be coincident with the critical state of the system. Together with

the new analysis using Price equation, we analyze the evolution of the web services comparing with the biological ones.
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1. INTRODUCTION

Open Ended Evolution (OEE) can be observed mainly

in human technologies such as computers, airplanes,

smart phones and all the other technologies that support

our everyday life. OEE is defined as progressive im-

provement of quality and inventions of novelty in those

technologies. Development of personal computers over

decades is a good example. At the same time, such

OEE is not solely caused by the singular development

of technologies and ideas behind each product, but rather

it is caused by a network effect of various technologies

and ideas. Developing transistors will create better smart

phones, which changes ways of human communication.

Changes in human communication will determine the di-

rection of smart phone development, and in the end re-

questing new design of transistors. This type of feedback

loop has been in place between development of human

technologies and human society for a long time.

The same sort of feedback is also found in between

a web service and the user community. In case of so-

cial tagging systems, we see an evolution of new tags and

their new combinations. The expansion of our cognitive

space is facilitated through the creation of new words.

New words provide us with new concepts and possibili-

ties in everyday life, and the creation of new action pat-

terns triggered by new ideas could lead to the creation

of further new ideas [2]. In other words, social tagging

dynamics is supposed to be a co-evolutionary system be-

tween human behaviors and vocabulary, wherein a new

tag opens up new behavioral space and the behavior ori-

ented by the cultural preference recurrently changes vo-

cabulary space.

A mathematical treatment of word creation in social

tagging analyses is often over-simplified such as Poisson

process [3]. Yet some studies have developed sophisti-

cated ideas, which assume a correlation between novel-

ties [4] or a latent semantic structure behind word occur-
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rences [5, 6]. In this study, we discuss a potential mech-

anisms of OEE by analyzing a new tag creation in a web

service in relation to community formation and commu-

nity size.

2. ANALYSIS

2.1. Community formation

We demonstrate the empirical analysis on the photo-

sharing social networking service “RoomClip” provided

with tagging data by its operating company Tunnel, Inc.

The data consists of a list of annotations, where each an-

notation has, the time stamp of the annotation created, ID

of the photo, ID of the user who posted the photo, and a

string of the tag. The data covers almost four years since

the inception of the service, and the total numbers of dis-

tinct words and annotations are approximately 3.3× 105

and 8.8× 106, respectively. There are over 7× 104 users

who posted at least one photo.

First of all, we pay attention to the users community

and characterize it with respect to tag usages [7]. The

setup and procedure of the analysis is as follows:

1. Extract the users whose number of posts during the

data period is greater than or equal to 100. This threshold

is determined ad hoc in order to ensure their vocabulary

size is sufficiently large.

2. Calculate a probability distribution of used words for

all extracted users.

3. Calculate similarity between the probability distribu-

tions for every pair of the extracted users, and define a

user similarity network in word usage.

4. Traversing from a loosely to densely connected net-

work by changing a similarity threshold, observe the con-

nectivity of the highly prductive users.

Here we define the novelty production rate of the

user as the total number of words that were created by

him/herself and used by more than 100 other users. The

vocabulary similarity between a pair of users is evaluated



dJS ≤ 0.4 dJS ≤ 0.35 dJS ≤ 0.3 dJS ≤ 0.25

Fig. 1 The user similarity network. Each node is a user, and they are connected if dJS is smaller than the threshold value

0.4, 0.35, 0.3, 0.25 from the left to the right, respectively. The top four figures show the number of word creations by

individuals in color; shifting from blue, yellow to red means they created more words. The bottom four figures show

the community structures detected in each network.

using the Jensen–Shannon divergence

dJS(pi||pj) = [dKL(pi||q) + dKL(pj ||q)] /2,

q = (pi + pj)/2, (1)

where pi and pj are the probability distribution of user i
and j, respectively, and dKL(p||q) is the Kullback–Leibler

divergence from probability distribution q to p. The value

of dJS falls within a range between 0 and logk 2; here

k = e and therefore 0 ≤ dJS ≤ ln 2. Smaller dJS means

that the pair has more similar “vocabulary profiles”.

The result is shown in Fig. 1. Laterally aligned top

four figures show the networks with different threshold

values of dJS that gets smaller from left to right. The

far left case (dJS ≤ 0.4) exhibits a typical core-periphery

structure [8], which has a densely connected part (core)

surrounded by loosely connected parts (periphery). Us-

ing a smaller threshold value means that a more strongly

connected part is focused, where we obtain a sub-network

approximately associated with the core part of the core-

periphery structure. At the same time, however, com-

munity structure, which means a loosely-connected set

of densely-connected subgraphs, arises with such small

threshold values. This is more clear if we apply a com-

munity detection method to the networks. The bottom

four figures exhibit the detected community structures by

the modularity optimization method [9], and the obtained

values of modularity—0.35, 0.42, 0.49, 0.56 from left

to right—tell that the community structure becomes rela-

tively salient in a strongly connected part of the network.

On the other hand, the color of nodes in top four fig-

ures shows the novelty production rate of each user; red

is high and blue is low. In the core part, a novelty pro-

duction rate of users have a relatively lower value (see

the case of dJS ≤ 0.3 and 0.25). The user similarity net-

work in word usage has a latent community structure in

its strongly connected part. And on top of that, users who

create new words which are used also by a certain amount

of other users, are located out of such community struc-

tures or in peripheral parts of the network. Nevertheless,

Fig. 2 A core-periphery structure in the user similarity

network. Each node is a user, and those with higher

tag creation rate is plotted with a red color [10]

it should be noted that the novelty creating rate becomes

larger in the higher order cliques in the core part [10].

Namely, the users in the peripheral parts and the

higher-order cliques have the higher new tag production

rate. This tendency becomes more clear in a different vi-

sualization of the same analysis depicted in Fig. 2. This

suggests that users tend to create new tags when they have

different profiles from others (i.e. users in a peripheral

part) or if users strongly share the same interests ( i.e.

users in a higher order cliques of a core part). Those two

rather opposite cases are observed in this analysis.

2.2. Community size

The above analysis lacks the analysis of dynamics how

the tag creation rate changes over time. A single photo

submission is associated with many tags. Actually the

average number of tags is almost monotonically increas-

ing from the beginning of the web service. A maximum

number of tags will become over 100! In order to mea-

sure the growth of “complexity” in a quantitative manner,

we measured the distinct number of tags as the number of
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Fig. 3 The number of distinct tags observed in the ser-

vice as a function of the number of annotations. The

creation of new tags converges to the curve x−0.98,

so that the tag creation rate per annotation is almost

constant (α = 0.05 in this case).

annotations as well as the number of photos.

From our previous studies, we know that the volume

of the entire dictionary (of tags) increases typically as tβ ,

by taking the number of annotation as t, which is known

as Heaps’ law. This exponent β takes the value between

around 0.7 and 1 empirically, and in Fig. 3, we see it

converges to almost one at around the 105 annotations.

Beyond this number, the distinct number of tags is pro-

portional to the total number of annotations.

The transition point in Fig. 3 is also computed as

a function of the number of photo submissions. From

Fig. 4, beyond the number of photo submissions around

104 to 105, we notice that the exponent of the fitted curve

changes from 0.7 to 1.4 for the number of distinct tags.

What causes the exponent change is not clear. It may

have been caused by a kind of system changes in the web

service or it may be simply caused when the system size

(i.e. the total number of the users) becomes larger than a

certain amount.

We assume that it may correspond to the critical point

which is obtained from the network Hawkes analysis [?].

In the paper, we also discussed a simple mechanism of

creating novelty when a system size goes beyond a cer-

tain size and showed that a simple boid system shows

qualitatively different dynamics beyond a critical flock

size (about 10k). It is said that there exists a critical

community size (e.g. the Dunbar’s number) due to the

bounded cognitive capability of agents and the resulting

stability of the community [11]. The current example

provides yet another example of such critical size of com-

munity.

3. DISCUSSION

At the OEE workshop (published in [12]), we have dis-

cussed behavioral hallmarks and the hypothesized mech-

anism of OEE from various topics. In this paper, we have
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Fig. 4 The number of distinct tags observed in the service

as a function of the number of photos. The creation of

new tags changes from negative to positive at around

104 to 105.

added several new observations to our previous findings.

We propose a few hypothesis with the OEE phenomena

in the web service.

• The novelty creation rate and a core strength of the net-

work may be correlated. Our analysis shows that users of

the higher order cliques produces more novel tags, as well

as users of the peripheral part.

• The novelty creation rate doubles its value from 0.7 to

1.4, after a total amount of submissions excesses a certain

number.

• A community develops several sub-communities of

users with the similar profiles (i.e. possessing similar tag

usages). Within these sub-communities, homogeneous

community has a potential to create novelty.

These hypothesis should be refined by the further anal-

ysis, yet we expect that these correspond to Ackley’s def-

inition of indefinite scalability of OEE [13]. That is, “

supporting open-ended computational growth without re-

quiring substantial re-engineering.” A growth of the sys-

tem size leads to a potential “door-opening” innovation

in each critical size. Also as it has been discussed in [12],

the present work provides an another example of adaptive

novelty, since the evolution of a web service can utilize

finite combinations of old and new tags which will gen-

erate a qualitatively new niches for the users.
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