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Abstract

We detect a form of open-ended evolution (OEE) in empirical data about
human technological innovations. This evolution occurs in a non-biological,
cultural population that exists in the real world and is evolving in a way that
seems as open-ended as biological evolution. Using patented inventions as a
proxy for technological innovations, we mine public patent records for evi-
dence of one specific form of OEE—the on-going emergence of technologi-
cal innovations—and we compare two ways to detect it. One way is to de-
tect the first instances of pre-defined patent pigeon holes, such as the tech-
nology classes listed in the United States Patent Classification (USPC). The
second way is to embed patents in a high-dimensional semantic space and
detect the emergence of new clusters. Both methods reveal the on-going gen-
eration of new kinds of technologies when applied to hundreds of years of
patent records, but only clusters reveal innovations that are unanticipated. Our
methodology easily generalizes to detecting unanticipated innovations in other
evolving populations that leave rich digital traces.

Keywords: patent, invention, innovation, technology, classification, taxonomy,
open-ended evolution
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1 Detecting innovations with pigeon holes and clus-
ters

We develop and apply methods for detecting a kind of open-ended evolution (OEE)
in empirical data generated by evolving systems. The methods apply to both models
and real systems in the natural world. Discussions of OEE typically focus on bio-
logical examples, but central here is a non-biological population in the real world:
human technological innovations. Human technology and living organisms differ
in many respects, but both exhibit open-ended evolution and the study of each will
illuminate the other.

We study technological innovations by means of a convenient proxy: patented
inventions. Patent records contain detailed, accurate, digital descriptions of each
invention. In the aggregate this big data stream can provide an illuminating window
on the evolution of technology. Contemporary methods in statistics and machine
learning can reveal a wealth of patterns in the evolution of technology, including
our primary focus here: the on-going generation of new innovations. Our methods
easily generalize to the detection of innovations in other populations with sufficient
digital traces.

Open-ended evolution is widely recognized to be enigmatic (Taylor et al. (2016))
and one reason is the emergence problem: the difficulty of detecting entities that
are so novel that we have no distinctive descriptions for them (Bedau et al. (1998)).
This problem is especially acute for those aiming to detect the emergence of new
technological innovations armed only with a pre-defined classification created by
human experts. The problem is not just the biases, preconceptions, and other epis-
temic short-comings of any human expert. A more specific challenge is to create
a classification that detects innovations when they were unanticipated when they
occurred. Recent examples include nanotechnology and genetic medicine. Lacking
an accurate classification blinds us to some innovations and increases the number
of undetected genuine innovations (false negatives).
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Our goal here is one of the forms of OEE listed by Taylor et al. (2016)—the
on-going generation of new kinds of entities—and we aim to compare two methods
for detecting it. One method classifies entities by distributing them into a fixed
and finite list of pre-defined pigeon holes and detecting when pigeon holes are first
exemplified. The list of pigeon holes is revised from from time to time, in order
to classify especially novel innovations properly. The second method classifies
entities into connected groups of clusters in an abstract technology feature space
learned from a huge corpus of many millions of documents. Here we compare
these methods by examining hundreds of years of US patent records, with special
attention to the period following 1976.

Lists of pigeon holes are constructed by human experts after sifting through a
wealth of historical information, and the resulting classifications are often useful for
describing historical patterns of innovation. A pigeon hole must be defined before
anyone can classify things with it, even if those things pre-date the formulation of
those definitions. We will examine whether this historical orientation of pigeon
holes blunts their usefulness for detecting unanticipated future innovations.

In both cases we can formally construe a (non-hierarchical) classification as a
set of classes of patents, where each class may be labeled with an integer, so the
classification is a map from the set of patents to integers C : P → I . We will
assume that there are a finite number of different classes of patents. Class i is the
set of all patents mapping to i, or C−1(i). For classifications consisting of pigeon
holes, C(i) is just an integer indexing the pigeon hole on a pre-defined list. When
we classify patents by mapping them into a group of nearby clusters (described
below, C(i) is the ith group of cluster centroids. Each group of cluster centroids
defines to a locally-connected sub-region in an abstract technology feature space
described below.

Evolutionary activity statistics have been used to measure and compare the rate
of adaptive innovation in various computer models (Bedau and Packard (1991);
Bedau et al. (1998)) as well as in biological populations (Bedau et al. (1997)) and
cultural populations (Buchanan et al. (2011)), and we detect innovations with these
statistics for both pigeon holes and clusters. The evolutionary activity of a pigeon
hole or cluster i at time t is defined as simply the cumulative sum of the number of
instances of i from its first exemplification to time t. Our use of activity statistics
is supported by the hypothesis that new adaptive innovations can be identified by
their unusually high evolutionary activity. When evolutionary activity is plotted as
a function of time, new adaptive innovations produce steeply rising “waves” and
the rate of adaptive innovation can be measured as the rate of production of new
activity waves.
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2 Innovations detected with technology pigeon holes
The United States Patent and Trademark Office (USPTO) classifies each patent by
putting it into one (or more) classes chosen from the United States Patent Classi-
fication (USPC). Those classes are further sub-divided into codes and sub-codes,
and the classes are further collected into sub-categories and categories, but we can
ignore those details here. The USPTO revises the USPC from time to time, and
when the precision matters we specifically refer to the USPC classification in effect
in 2018, denoted USPC2018. Of course, the USPTO will likely revise the USPC2018

again sometime in the future. Looked at historically, the USPC is a time-indexed
sequence of classifications, produced and incrementlly revised now and then by
human experts.

Figure 1 depicts the evolutionary activity of each class in USPC2018. The bottom
figure blows up the activity scale on the y-axis by over two orders of magnitude,
in order to highlight the new activity waves caused when classes of technology are
first exemplified. The blow-up clearly shows new waves of evolutionary activity
continually sweeping up through the figure—the signature of the on-going gener-
ation of new significant technological innovations. The density of new waves at
a particular time is a measure of the rate of innovation at that time (Bedau et al.
(1997)).

Figure 1 shows that many classes were first exemplified early on in the 1850s,
but the density of newly exemplified clusters generally lessens over the first hun-
dred years. After 1945 the rate picks up again and large number of classes are
first-exemplified at the creation of the modern-day USPTO in 1976. But then rate
quickly drops to nothing and remains at zero through the final twenty years. (As an
aside, note that many of the flatlined classes in Figure 1 were first exemplified very
long ago.)

The continual production of new activity waves like those in Figure 1 provides
one window on the contingent and open-ended process by which the technology
pigeon holes in USPC2018 were exemplified. But pigeon holes and any fixed and
finite classification share an obvious limitation: increasing blindness to new inno-
vations as more and more pigeon holes are exemplified. After the last pigeon hole
has been exemplified, no further innovations can be detected—not without defining
some new pigeon holes (and possibly abandoning some existing ones).

For this very reason the USPTO sometimes revises the USPC. For example,
40% of all US patents issued in 1976 have by now been reclassified (Lafond and
Kim (2017)). With time any fixed and finite classification becomes increasing blind
to innovations; this probably explains the general decling in the rate of newly ex-
emplified classes in Figure 1 and especially the absence of new activity waves in
the last twenty years. If any genuine innovations arose after 1995, they failed to
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Figure 1: Time series of the evolutionary activity of each class in the USPC2018,
computed from 1845 to 2015. Below: Blow-up of the bottom 0.5% of the evolution-
ary activity scale. The frame containing a class’s first exemplification is indicated
by its color, from oldest (blue) to newest (red).
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first exemplify any USPC2018 class, and that makes them exactly the sort of false
negatives created by the emergence problem.

3 Innovations detected with technology clusters
A different, implicit description of technological innovations emerges empirically
from word co-occurrence statistics gleaned by textual analysis of millions of docu-
ments describing all of the patents issued by the USPTO since 1850. Packard et al.
(2018) recently demonstrated a new classification of technology that evolves over
time. The method uses publicly available topic modeling software, doc2vec (Le
and Mikolov (2014), Rehurek and Sojka (2010)), to build a 300-dimensional seman-
tic vector space. Patent descriptions are embedded in this space with an algorithm
that tries to make the proximity of two patent documents in the space proportional
to the similarity of the two inventions described, and a metric on the technology
space provides a precise, quantitative measure of the similarity of any two inven-
tions. This embedding space functions as a technology feature space, and different
regions in it correspond to different kinds of technologies. (See the references above
for more details.)

We collect US patent records from 1976-2014 into temporal “frames” contain-
ing 50k successively issued patents, each precisely located in technology space.
Then we cluster the patents in each frame using the k-means algorithm, yielding
100 successive frames each containing 25 clusters of patents. The clusters in a
frame are stamped with the frame’s time index, and different frames can contain
clusters in rather different locations, so we can observe where clusters move be-
tween frames. The result is a precise description of how clusters in technology
space change and evolve over time.

To produce an overall classification from these 100 frames with 25 clusters
apiece, we collect nearby clusters into groups, and we classify a patent into the
group that contains the cluster that contains the patent. These groups are defined by
a set of centroids that are near one another in technology space; specifically, every
centroid in a group is near to at least one other centroid in the group. Consider
the network in which the nodes are the 2500 centroids in 100 frames each with 25
centroids, and in which two nodes are connected if and only if they are located in
technology space within some pre-defined distance threshold (dth).

Our cluster groups are simply the connected components in this network. Each
cluster group picks out a distinctive local region of technology space, defined by
clusters in the group. By definition every centroid in a group is spatially near some
other centroid in the group, but two centroids in the same group could be quite
distant spatially provided they are connected by a finite sequence of pairs of nearby
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centroids. Furthermore, centroids in a group can be temporally distant from every
other centroid in the group; i.e., connections among centroids are atemporal (i.e.,
temporally “global”). Since groups of centroids are parameterized by dth, changing
this parameter can change the groups.

Every patent issued between 1976 and 2014 falls into exactly one of the 25 clus-
ters in one of the 100 data frames. We classify a patent with (index of) the group
of clusters that contains the cluster that contains the patent. Since group of clusters
grow and change over time, so does the classification they define. Different groups
can be exemplified at different times, and over time groups can come into exis-
tence, split, merge, and go out of existence. They can also persist over time while
moving through technology space. This classification evolves with each crop of
new innovations, and on-going analysis of streams of empirical data automatically
documents the changing classification.

Relatively few biases, preconceptions, and other human epistemic limitations
constrain the construction of statistically-defined technology clusters. The emer-
gence of technology clusters presupposes only a suitable technology space, con-
structed from word patterns in millions of patent records. Those patent records were
authored by millions of different human beings, and those authors no doubt each
have individual epistemic limitations. But the construction of technology space av-
erages out those individual quirks. On the other hand, our technology clusters could
still reflect any epistemic limitations that millions of patent authors might share.

We locate each cluster in technology space by computing its centroid, and we
measure the distance between clusters as the distance between their centroids. It
is difficult to visualize high-dimensional clusters, so Figure 2 is a two-dimensional
projection of our 2500 cluster centroids, produced with the t-SNE algorithm (Maaten
and Hinton (2008)); t-SNE does an especially good job of reflecting local structure
in very high dimensional spaces. Each cluster centroid in each frame is shown as
a dot, and the time of each frame is encoded in its dot’s gray scale, from white
(earlier) to black (later). The successive locations of certain centroids describe the
movement of the clusters in technology space.

The t-SNE projection in Figure 2 shows that the centroids are located in technol-
ogy space in readily identifiable groups. Some groups persist through every frame
and others first emerge in some later frame. Also, some groups split apart over time
and others move closer and merge. These categories of trajectories in technology
space indicate the on-going emergence of new clusters in technology space—a form
of OEE.

Figure 3 shows all the centroids in the thirty largest groups of clusters, with the
columns corresponding to frames of data and the rows corresponding to groups.
The groups are ranked down the page from largest to smallest. The largest groups
at the top persist through all or most of the frames, and many have more that one
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Figure 2: A two-dimensional t-SNE projection of the centroids of clusters of patents
issued during the years 1976-2014. Centroids are nearby in a t-SNE projection if
and only if they are nearby in the 300-dimensional technology space. Faint contour
lines and the landscape color gradient indicate the kernel density estimation for the
centroids. One hundred frames of 25 centroids are overlaid. Centroids in each
frame have the same color, and gray scale represents time; earlier (later) centroids
are lighter (darker).
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Figure 3: The thirty largest group of clusters, ranked by size and numbered from
top to bottom, and displayed in one hundred frames (columns, numbered left to
right). Centroids in the same group of clusters have the same color, but connections
among centroids within a group are not shown.

centroid in some frames. Groups 2, 5, and 6 have at least one centroids in every
single frame, but most groups have temporal gaps in the group’s exemplification,
and gap frequency and size rises, as expected, with falling group size. The group
exemplification patterns in Figure 3 contain some clear examples of the emergence
of new innovations (groups 11, 14, 15, 20, 21, 26-28) and the death of old inno-
vations (groups 23, 25, 29, 30). This pattern of exemplification gaps, and births
and deaths appears to be robust; even if meta-parameters like size of time frames or
number of clusters are changed, the generic pattern remains the same.

The visible groups of centroids in the t-SNE projection (Figure 2) roughly cor-
respond to the groups. Figure 4 shows the thirty largest centroids in Figure 2 and
colors them by the identity of the groups in Figure 3 that contain them. The cor-
respondence between cluster groups and the visible groups in the t-SNE confirms
that the clusters of patents in technology space arise in distinct local regions.

Figure 5 (top) shows the evolutionary activity of each group of technology clus-
ters that arose during after 1976 and eventually contains at least 4 centroids. The
figure (middle) clearly shows the on-going generation of new innovations, as pi-
oneering clusters of patents arise in unexplored regions of technology space and
new activity waves start accumulating exemplifications. The distance distributions
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Figure 4: The centroids in the t-SNE projection in Figure 2 are colored and num-
bered with the thirty largest groups of clusters.
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Figure 5: Top: Evolutionary activity of groups of centroids that are first exemplified
after the first frame and eventually contain at least 4 centroids. Middle: Blow-
up of the bottom 10% of the y-axis above to see the emergence of activity waves
that indicate new innovative groups of centroids. Bottom: Temporal sequence of
distributions of distances (min, mean, and max) between the earliest centroid in a
group of centroids and all other centroids in the same or earlier frames. The black
dashed line shows dth = 0.04, the distance threshold used to connect centroids into
groups of centroids.
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in Figure 5 (bottom) show that many of those innovations arise in remote regions
of technology space. By construction, any centroid in a group of centroids is far-
ther away than dth from all centroids outside the group. The distance distributions
in Figure 5 (bottom) show that about a quarter of the innovations arise in remote
regions of technology space, farther away than 4× dth = 0.16 from any centroid in
any other group.

Together, Figures 2, 3, and 5 present clear and detailed empirical evidence for
the on-going generation of new and persisting clusters of technology—a clear ex-
ample of technology’s open-ended evolution. Figure 5 (middle and bottom) shows
dozens of significant innovations that arise after frame 30, which contains clusters
of patents issued in part of 1995. But Figure 1 shows that no USPC2018 classes were
first exemplified after 1995; that is, the 450 pre-defined classes in the USPC2018 de-
tect none of the innovations in Figure 5 (middle and bottom) that arise after frame
30. The innovations are all false negatives for the USPC2018.

4 Detecting unanticipated innovations
We have shown how to classify an evolving stream of patent data by first embed-
ding successive frames of patents in technology space, then clustering each frame
of patents, and finally grouping centroids of nearby clusters. This is a practical
and feasible solution to the problem of detecting and classifying new and emerging
technological innovations. The resulting classification is pragmatic and it will con-
tinually and automatically adapt to unpredictable changes in the incoming stream of
data. Significantly new kinds of inventions will produce new groups of patents that
can be revealed by clustering and other adaptive learning algorithms. Our method
of detecting new technological innovations is a simple illustration of a very general
way to solve the “emergence” problem for open-ended evolution.

Our methods solve analogous emergence problems for many other kinds of in-
novations such as those happening in biology, chemistry, culture, and beyond. Up
until now it has been difficult for observers of dynamically evolving systems to de-
tect novel innovations before the innovation’s distinctive characteristics have been
been discovered and mapped. Our methods now enable emergence problems in all
of these areas to be solved.

The strategy connecting these solutions is effective because it automatically
adapts whenever new clusters emerge from the incoming stream of data. Piping a
changing real-time data stream through a learning algorithm enables the automatic
detection and characterization of unanticipated innovations. These achievements
open the door to new methods for forecasting innovations in a wide variety of fields
(Packard et al. (2018)).
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