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Abstract

Artificial chemistries hold promise for demonstrating and
studying open-ended evolution (OEE), in part, because they
are typically engineered ‘bottom-up’—emphasizing primi-
tive types that “interact well” in multiple contexts, rather than
directly implementing some single given function. A price
of that generality is that the living ‘agents’ or ‘components’
typically involve substantial configurations of primitives, and
indeed it may be unclear when, where, or at what level(s)
life or evolution is even happening. A basic OEE research
challenge, therefore, is to develop methods for finding liv-
ing and evolving components by observing a system’s chem-
ical dynamics “from the outside”. As a case study, this paper
demonstrates analytic techniques for identifying and track-
ing living components, using a version of the “C271” digi-
tal protocell which has been crudely modified to display au-
tonomous growth, fission and fusion, and death. In this model
those operations are randomly triggered, leaving the system
(we believe!) free of significant evolutionary dynamics, so we
can explore it as a neutral model or “shadow” as proposed by
Bedau et al.| (1998). Using image files captured during the
artificial chemistry simulations, we recover selected atomic
types and positions, then derive protocell sizes and positions,
then infer key “life events” such as cellular fission and fusion,
allowing us to infer components, component movements over
time, and “family trees”. Even in this simple case of all-but
accidental life, without evolutionary activity, we find rich dy-
namics within and among the identified components.

Open-ended evolution vs top down design

“Top-down” engineering design begins with some required
goal and seeks physical realizations to achieve it, while op-
timizing against some set of constraints. “Bottom-up” engi-
neering, by contrast, begins with available physical capabil-
ities and components and seeks increasingly useful config-
urations of them. Though both approaches often have roles
in complex systems engineering, they can differ greatly in
the character of their results, with top-down tending toward
greater efficiency and fitness for purpose, while bottom-up
yields greater resilience and reusability.

If a system is to be capable of open-ended evolution
(OEE), it seems likely, or perhaps inevitable, that whatever
passes for a high-level goal or “fitness function” within the

system will itself change over time. Bottom-up approaches
may therefore have an advantage, since even their ‘base
level’ evolutionary components—Iliving agents both as phys-
ical objects and as dynamical processes—are already built
from smaller and reusable parts and mechanisms.

In artificial life—at least of the “soft alife” variety Bedau
2003—the ‘““agent” that will be the star of the proceedings
is often designed top-down. The programmer directly con-
trols and represents all internal details of the agent—such
as their size and size limits, what actions are possible and
their effects, or what counts as genomic information along
with its size and limits. Though this simplifies and acceler-
ates model design, it also makes the agent’s internal struc-
tures “opaque”, in the sense that there are no interactions
among those structures except those explicitly defined by
the programmer. Unless it is explicitly programmed, there
is no chance that an agent might suffer internal damage, no
chance it might acquire a duplicate organ, no chance it might
incorporate something from the environment, and so on.

Artificial chemistries (Banzhaf and Yamamoto, 2015, is
a primary reference) are the poster children for bottom-up
engineering in soft artificial life. Here, the programmer
typically has direct control over atomic size and molecu-
lar shapes and limits, over what reactions may occur and
their results. Then as an extra step, a “biological” level—the
agents, their internal structures, their genetic information,
and so forth—is defined by the programmer as an initial con-
dition, rather than directly as “laws of physics”.

In this case, whatever atoms and reactions have been
taken as primitive, they have already been ‘tuned’ to work
together at least sufficiently to define (at least an “ances-
tral” version of) the living agent under study. Moreover,
because an agent’s “organs” and internal processes are ex-
plicit within the model, and operating according to the same
programmer-chosen laws of physics, radical alterations of
what even constitutes an agent become possible.

It is true that even “top-down agents” can display such
alterations and reinterpretations at the level of interacting
agent populations, unlike in an artificial chemistry—but still,
no such general interaction abilities were required in the ini-



tial top-down design. Open-ended evolution is a challeng-
ing and multifaceted concept, but artificial chemistries with
bottom-up design at least cut directly to the chase.

Finding the agents in the data

At the first OEE meeting in York (Taylor et all |2016), the
first author proposed the goal of identifying hallmarks of
evolution “from the outside”—yvia observations of a volume
of space-time, without using any particular knowledge of the
system(s) operating within that volume. Specifically, this
“OEE research challenge” (Ackley, |2015) was presented:

Develop a statistical method that, for a given discrete
window of space-time-granularity,

1. Identifies potential evolutionary components via
near perfect spatial autocorrelation, then

2. Infers ‘life lines’ by connecting spatiotemporally ad-
joining potential components

3. Eliminates time by projecting the life lines onto a
phase space defined by component size, then

4. Assesses life line evolution by measuring distance
travelled, compared to a random walk, in that space

This paper exploits knowledge of the C2/]/ membrane to
finesse the general case of step 1, and focuses primarily on
step 2. Using only external system observations of our ar-
tificial chemistry simulator, we attempt to locate and track
all the “biological components” in the system, across space,
across time, and across potentially evolutionary events like
component splitting, merging, and death. We present a case
study of one simulation run that spanned over 16,000 sites
with an average of 600,000 events per site occuring during
the simulation. Four initially-seeded protocells lead to hun-
dreds by the time we stopped the run, and, depending on
their parameter settings our tracking algorithms automati-
cally recover all or nearly all of the “intuitively obvious”
events that a human would perceive looking at the same data.

The evolutionary inference procedure

Figure [T| provides a high-level view of the entire evolution-
ary inference process, which operates in four phases. Start-
ing from screen image files generated by the mfms artificial
chemistry simulator, we sample the displayed grid of sites
and identify key atomic types based on the colors found
(Figure[Taland[TD). Note that only some atomic types can be
uniquely identified by this process, and many details of in-
ternal atomic state are likewise unobservable, but the crucial
InnerMembrane (IM) and OuterMembrane (OM) atoms have
no internal state, and are displayed in unambiguous colors.
In addition to the membrane types, we identify empty sites
by the occurrence of background colors, and everything else
is lumped into one ‘Other’ category, which in this case con-
sists of the Content atoms that reside within the membranes.

Topological inference phase

Following atomic recovery, the second phase scans the grid
to infer protocell membranes and contents (Figure [Ic). As-
suming the grid is membrane consistent as defined in |Ack-
ley| (2018)), any non-membrane site that is adjacent to an IM
is necessarily inside that membrane, so when our topologi-
cal inference scan first encounters such a site, it performs a
flood fill to label all other sites that are internal to the same
membrane.

A single complete grid scan, with flood fills as needed,
suffices to identify all distinct closed membranes with their
insides, and temporary labels are assigned to them as they
are encountered. (Note that if membrane consistency is vi-
olated, such distinct labeling is in general not possible—but
at least this phase will detect such violations.)

Temporal inference phase

The third phase (Figure [Id) compares the previously iden-
tified protocells (“Then” or T' nodes) with the current crop
(‘Now” or N nodes), attempting simultaneously to explain
where all the latter came from and all the former went. First,
a matrix of spatial intersections is computed between all
pairs of 7" and N protocells, and each pair produces two
potential directed edges, one from Then to Now and one the
reverse. Each edge is assigned a percent weight by divid-
ing the intersection size by the size of protocell emitting the
edge; T and N nodes are typically different sizes causing
the two edge weights to be unequal even though their inter-
section is symmetric. In Figure[Id] for example, the Ta—Na
edge has a higher weight than the Na—Ta edge because Ta is
smaller (192 sites for Ta vs 221 for Na, with an intersection
of 187, though that is far from evident in the figure).

The non-zero-weight edges are sorted into decreasing or-
der and used to construct a directed bipartite temporal tran-
sition graph between Then and Now nodes. The edges are
considered one at a time, and an edge is inserted into the
graph if it is useful, where

useful(E) = out(from(E)) = 0 V in(to(E)) = 0.

If an edge is not useful it is discarded; either way the edge
consideration process continues until either there are no
more edges or all nodes have been used, where

used(X) = out(X) > 0 Vin(X) > 1.

When all nodes are used, the graph construction process
terminates, even if some edges remain uninserted. In Fig-
ure [Id] for example, the top three edges suffice to use Ta,
Tc, Td, and Nc—but Na (with out(Na) = 0 A in(Na) = 1)
remains unused. After adding the next three edges, however,
all nodes are used and graph construction is complete.

Evolutionary inference

Now working solely from the temporal transition graph, the
final phase of the process is aimed at two goals, the first
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Figure 1: Overview of evolutionary inference process. (a) Screen captures from the mfms simulator provide crude but regular
system observations. (b) Key atom types are located by color, after a once-per-run manual geometry calibration. (c) Closed
protocell contours are inferred assuming membrane consistency, and assigned temporary labels. (d) Intersections are computed
between prior and current protocells, and sorted by the percent of outbound cell sites in each intersection. Corresponding
directed edges are added to a temporal transition graph until all nodes have been used. (e) Finally, evolutionary events (e.g.,
‘L’ive another day, ‘J’oin with a larger cell in a "M’erger) are inferred, and numeric cell IDs are carried forward (or created) as
needed, creating protocell /ifelines from which multigenerational ‘family trees’ and other statistics can be derived. See text.

of which is to infer evolutionary events for each transition
between Then and Now. Overall, we identify five possible
events, discussed below. The second goal is to create pro-
tocell lifelines by managing numeric “cell ID” labels that
remain stable not just across one transition but across the
entire life of a protocell, though it may move and split and
merge over time. From the evolutionary events along the
lifeline of any given cell, we can produce statistics and vi-
sualizations like protocell lifetimes, offspring count, family
trees and so on.

Each of our five evolutionary events is defined by a char-
acteristic graph signature specified in terms of node connec-
tivity and their in() and out() degrees, as summarized in Ta-
ble[I} Note that although the intuitions behind the signatures

Event  Temporal transition graph signature

Live. T+ NAin(N)=1Ain(T)=1
Split T+ NAout(N)=1An(T)>1
Merge in(N)>1
Genesis in(N) =0Aout(N)=0
Death in(T) =0Aout(T)=0
Table 1: Evolutionary events and their signatures. Signa-
tures depend on unidirectional or bidirectional node connec-
tivity, represented by arrows, and the indegrees and outde-
grees of the graph nodes. See text.



are reasonably obvious, and empirically they seem to work
well enough in our as-yet limited testing, we do not have a
clear theoretical framework to explain why these signatures
are effective in any crisp way. Other and better approaches
may well be waiting to be found.

In a Live event a current protocell NV is connected in both
directions to some prior protocell 7', while no other edges
are directed at either IV or 7T'. The detection of a Live event
provides a story for both the prior and current nodes, and the
durable cell ID assigned to 7' is transferred to NV (as in the
transfer of cell ID #2 from Tb to Nb in Figure|[I¢).

The Live event represents the typical case of a protocell
persisting over time, moving about and changing size and
shape—but only by a small amount from Then to Now. Note
how the graph construction procedure helps make this signa-
ture work: Although in complex situations it is common for
some prior cells (especially large ones) to overlap unrelated
current cells, such overlaps are typically small and so their
associated edges are unlikely be useful by the time they are
considered (if they are considered at all).

A protocell Split is detected when N points at one 7" but
that T" points back at more than one Now node. Recognizing
Splits via in(7") takes advantage of the fact that the intersec-
tion of each ‘splittee’ with its presplit parent will be a huge
fraction of the splittee’s size, even though perhaps only a
modest fraction of the parent’s. Note also that—although
it will typically be rare with fine-grained analyses—there is
nothing preventing a protocell from splitting into more than
two pieces at once, and we have found this signature works
well even in that case. When a split occurs, the presplit cell
in T receives a ‘P’arent event, and its cell ID is transferred to
the largest resulting protocell, while the other split offspring
receive new cell IDs drawn from a globally-incrementing
counter, with a ‘S’plit as their first event.

In a similar, if time-reversed, fashion, a protocell Merge
event is declared when multiple T's point at the same N so
in(N) > 1. (It certainly seems there should be more fully-
symmetric Split and Merge signatures that would do at least
as well as those in Table[I] but that is future work.)

In the Merge event depicted in Figure Tc and Td
merge into Nc. Td, the larger premerge protocell, is assigned
a ‘M’erge event, and its #3 cell ID is transferred to Nc. Tc,
by contrast, receives a terminal ‘J’oin event, and its #1 cell
ID is then retired.

Finally, Genesis and Death events are declared when an
N or T node, respectively, has no edges at all. Note that
neither event can occur unless the graph construction algo-
rithm ran out of edges, since the isolated nodes will perpet-
ually be considered unused. This raises a concern that some
low-weight edges might creep in and somehow disrupt sig-
nature recognitions, but so far that has not been observed.
A ‘G’enesis event acquires, and a ‘D’eath event retires, one
durable cell ID in the obvious fashion.

To complete one step of the evolutionary inference proce-

dure, all the above phases are performed (taking an empty
set for T' on the first step), and the resulting evolutionary
events are appended to cell data files named by their durable
cell IDs. Finally, the N nodes become the 7' nodes, and
the next observation is analyzed to produce a new N. We
illustrate how it works concretely in the next section.

Going beyond C211: Easy to be hard

The report on the C211 cell presented in the main confer-
ence (Ackley, 2018)) had its pages full just covering the ba-
sic mechanisms of the cell membrane and the programming
language and software engineering work behind its discov-
ery. During that protocell development, of course, possible
methods of using it as a basis for evolving artifical life sys-
tems were always in our mind, and as the design began to
stabilize we did make a few exploratory stabs at adding au-
tonomous growth and reproduction to C211.

Given that we had demonstrated initial growth from
a seed, plus coordinated protocell movement triggered
by randomly-generated “Commander” atoms, our unspoken
thoughts about protocell reproduction ran something like
this: How about a command atom that says: Each Content
should copy itself once, then send the copy and original in
prechosen opposite directions? Once the groups separate
enough the membrane will naturally fission and we’ll have
two protocells! With no evolution, how hard could it be?

Of course, eventually we did try it, and soon started to
appreciate how hard it could indeed be. But even though
nothing worked as planned, basically the first grossly-wrong
idea we tried was already quite fascinating to watch—and is
the basis of the case study in this paper.

For starters, since the simplest thing to do was add
a ‘Reproduce’ atom to the set of commands our (now-
modified) C27/1 cell would randomly choose to deploy,
that’s what we did. Of course, with this approach there is
no obvious feedback or regulatory mechanism to limit the
occurrence of Reproduce commands. It turned out not to be
quite true, but as far as we knew at the outset, all the proto-
cells would attempt to reproduce forever.

But more immediate issues arose long before we had to
face that problem. Issues we thought minor triggered a cas-
cading series of disruptions leading to a major meltdown,
typically along these lines:

» After gossiping a reproduction order, the Content origi-
nals generally managed to duplicate successfully, and the
mass of the protocell soon doubled. However—especially
because free space had been reduced by the doubling—
the originals and copies would often block each other as
they tried to move in opposite directions. As a result,

e The two groups began to get so spread out that their
communications were increasingly disrupted, and discon-
nected Content subgroups began to form. As a result,
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Figure 2: Early, middle, and late stages of the case study simulation run. (Left): On a simulated grid consisting of four
separately-processing but interconnected hardware tiles (dark grey squares), four protocells seeded via ‘Genesis’ events have
grown to maturity after 300 Average Events Per Site (300 AEPS = 0.3 kAEPS). (Center): By 300 KAEPS, mostly botched
reproduction attempts have left the grid littered with scores of tiny—but still active—"“miniprotocells.” Cells often cluster near
hardware tile boundaries because intertile overheads tend to slow the event rates in those regions. Cells displaying red/green
Content are generally attempting to reproduce. One such protocell—that insignificant near-rectangle all the way down in the
lower-left corner—happens to have cell ID #73. (Right): By the time the simulation was stopped at 600 kKAEPS, cell ID #73
has conquered the grid, consuming all accessible space, and completely engulfing the four groups of protocells not touching a
grid edge. Barring hardware errors or external perturbations, it is believed this is a stable simulation configuration. See text.
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Figure 3: Number of living protocells vs time.

* The Content in a single protocell stopped acting in uni-
son and started issuing conflicting orders, eventually with
inconsistent command priorities.

The lives of cancerous protocells

Once multiple non-dominated orders begin circulating
within protocells, basically chaos rules—but chaos of a par-
ticularly specific and life-like form. Protocells continue to
move and stop, to grow and split, to merge, and to die, with-
out any sort of regulation other than limited available space.

Figure [2]illustrates three sample observations of the sim-
ulation run we have to date studied the most. While it is
debatable at best whether there’s any sense or utility in these
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Figure 4: Total protocell size vs time.

protocell dynamics, at least there is a lot of dynamics. Run-
ning on an old laptop, we ultimately let this simulation run
for over a week, curious to find out if or when a stable state
would be reached (discussed below).

Figure [3] plots the number of protocells versus simula-
tion time, while Figure [] depicts the total volume of all
living protocells. The biomass collapse visible in Figure []
shortly before 500 kKAEPS was due to a few massive proto-
cell deaths—including cell ID #107, which reached a peak
volume over 1,000 sites around 483 kKAEPS, only to die
barely 1 KAEPS later. On the other hand, the resulting free
space stimulated a small uptick in the protocell count soon
afterwards, visible in Figure 3]
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Figure 5: The same simulation data analyzed at three different temporal resolutions. See text.

The subjectivity of evolutionary events

A slightly subtle point about our evolutionary inference pro-
cess is that the inferred evolutionary events and derived fam-
ily trees can vary depending on the granularity and phase
we chose for system observations. To minimize analysis
time it is preferable for the interval between Then and Now
to be large—hundreds or perhaps thousands of AEPS. On
the other hand, an excessive observation delays can intro-
duce significant artifacts into the evolutionary inference pro-
cess. In Figure 3] for example—using data from an ear-
lier run than our case study for this paper—the same three
split events not only occur at different times depending on
the granularity of analysis, they shift from being sequential
events to appearing simultaneous. Similarly, or even worse,
excessive observational delay can cause loss of tracking on
a fast-moving protocell, causing what “should” be a Live
event to be rendered as a Death + Genesis pair, and thus
unnecessarily breaking a cell lineage.

Discussion and conclusion

Cell ID #73’s march towards grid domination is not par-
ticularly visible in the aggregate and average views of Fig-
ures [3Jor[4] Its impact is hinted at in the declining protocell
count with the rising protocell volume above 500 kKAEPS,
but its towering influence is much more visible in other
more individualized—visualizations. Figure[6] for example,
plots only the initial portion of #73’s descendant family tree,
as the entire lineage is far too large to display for a page.

Stability = death

As suggested by the caption to Figure |2} we believe the fi-
nal configuration of this simulation run is a stable state—
and, mostly, we feel that is yet another bug in this hacked-
up C211 model. Because of the specific way that collective
Content commands are mediated by Commander atoms—as
discussed above and in |Ackley| (2018)—it turns out that No
commands can be given without an empty space, which is
needed to deploy the desired Commander atom.

Once cell ID #73 achieved absolutely fully-packed
status—not just internally but also across the grid as a
whole—no further internal dynamics could ever change that.
Even a Death event is a just another type of Commander,
so without an available empty site it cannot be deployed.
Although a few empty sites do remain, they seem to be in
configurations that the C2// membrane will never choose
to expand into. Indeed, most of the changes that occurred
during the 500 kAEPS era were tiny position adjustments
of miniprotocells, packing them more tightly and liberat-
ing a few empty sites that were soon snapped up by cell ID
#73—who didn’t, as it happened, choose to deploy a Death
Commander into any of them.

Although reaching a stable state is often valued as a way
of ascribing an overall “meaning” or “output” for a dynami-
cal or computational process, here it seems quite clearly like
a bug. We should view life as an operating system and not
an algorithm; freezing solid should never be the only move.



Life in the shadows

For the soft alife OEE enterprise to succeed in a satisfy-
ing way, we believe it is essential that we gain experience
and wisdom defining living components from increasingly
purely observational data

These crazy broken cancerous protocells are among the
best exemplars we have yet encountered of Tim Taylor’s ob-
servation that artificial life should be something you can’t
stop watching. Even with no evolution whatever, these sim-
ulations simply generate a tremendous amount of plot. Of
course, the narrative power of birth, living, and death is
shared by all alife models, but here—in the grip of a rich and
largely intuitive spatialized artificial chemistry implement-
ing the biological mechanisms—unexpected but retrospec-
tively satisfying plot twists seem to occur frequently, with
life and death sometimes plainly hanging on the least shift
of an atom.

We look forward to undertaking seriously the design of
controllable reproduction and death for a future protocell in
the C211 lineage, but we do not regret the we have time
spent developing membranes without reproduction, and re-
production without evolution. We suggest that perhaps this
is what it looks like to design systems so that its primitives
work well together.

Perhaps the most direct route to open-ended evolution be-
gins with no evolution at all.
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