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Abstract

One of the most remarkable features over the last ⇠ 3.5 bil-
lion years of life on Earth is the apparent trend of innovation
and open-ended growth of complexity. However, this trend
does not have a satisfactory explanation in terms of currently-
known principles. Here, we demonstrate that a variant of CA
are capable of open-ended evolution and innovation by imple-
menting state-dependent dynamical rules. To quantitatively
evaluate potential for open-ended evolution and innovation,
we present formal definitions of open-ended evolution as pat-
terns that are non-repeating within the expected Poincaré re-
currence time of an equivalent isolated system, and of innova-

tion as trajectories not observed in isolated systems. We show
that a small subset of state-dependent systems satisfy both
definitions. We compare these systems to a set of controls
including CA evolved according to fixed rules and randomly
evolved rules and show that state-dependent systems are sta-
tistically more reliable at producing both open-ended evolu-
tion and innovation. We further show how state-dependent
CA allow for sustained growth of complexity, demonstrating
that both the complexity and percentage of open-ended cases
increases with increasing environment size. Our results in-
dicate that uncovering the principles governing open-ended
evolution and innovation in the biosphere will likely require
removing the segregation of states and (fixed) dynamic laws
characteristic of the physical sciences in attempts to model
biological complexity.

Motivation
We question whether or not open-ended evolution is possi-
ble at all in a physical system. Open-endedness can easily
be achieved through mechanisms like the Busy Beaver prob-
lem [1] or by invoking randomness [2] either observing an
ever-increasing trend in complexity or by observing an end-
less diversity of innovation emerge. Other mechanisms such
as counting to infinity, air moving around in a room, ele-
mentary cellular automata rule 30 on an infinite lattice, and
Turing machines are all examples of open-endedness that
is generated by trivial mechanisms. Trivial open-endedness
demonstrates a weakness in scalability, since it is increas-
ingly difficult to produce systems that are differentiable from
random or reproducible at large scales.

Therein remains the question of bounded and fully-
deterministic systems, finite in their size and unable to ac-

commodate a truly infinite landscape of possibilities. Com-
putational resources that simulate biological systems are
faced with the problem of being confined to a finite space.
Is open-ended evolution possible in these types of systems?
The amount in complexity will eventually reach a limit in
such a space, thus excluding the possibility for a finite space
to achieve an ever-increasing trend in complexity. However,
this limitation does not discount the notion of open-ended
evolution in a finite system altogether. In fact, the possibil-
ity for continual innovation allows the possibility to exist,
even if the system maintains a maximal amount of complex-
ity over time.

Our intention is to explore new non-trivial mechanisms
that generate open-ended evolution in bounded, determinis-
tic systems. We accomplish this by first introducing defini-
tions of innovation and open-ended evolution that exclude
trivial mechanisms and agree with general intuition about
open-endedness, then generate mechanisms that produce ro-
bust, scalable open-ended evolution.

Open-Ended Evolution
Open-ended evolution cannot be solved with a fixed phys-
ical local law in a bounded, deterministic system that is
completely closed to any outside influence. If the system is
completely open, such as invoking randomness, then open-
ended evolution is trivial and non-robust as mentioned previ-
ously. Thus, robust, non-trivial open-ended evolution is only
possible in a system that is somewhere between completely
closed and completely open.

We consider definitions that are applicable to any such
universe u that can be decomposed in two (interacting) sub-
systems o and e (nominally the “organism” and “environ-
ment”). Since the notion of innovation is not entrained to a
single fixed input and physical law, a notion of comparison
must be embedded within its definition:

Definition 1 Innovation: A system u, which can be decom-

posed into subsystems o 2 O and e 2 E that interact ac-

cording to a function f , exhibits innovation if there exists
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for an isolated (non-interacting) system o 2 O.

That is to say a subsystem is capable of innovation if its
behavior is not contained in the dynamics of any isolated
system of an equivalent size. Likewise, we define:

Definition 2 Open-ended evolution: A system u, which

can be decomposed into subsystems o 2 O and

e 2 E that interact according to a function f , ex-

hibits open-ended evolution if there exists a t
r

such that

f tr (o) = {s
o

(t1), so(t2), so(t3) . . . so(tr)} or f tr (o) =
{r

o

(t1), ro(t2), ro(t3) . . . ro(tr)} is non-repeating for t
r

>
T
P

, where T
P

is the Poincar´e recurrence time for an isolated

system o 2 O.

A universe u exhibits open-ended evolution (OEE) if,
and only if, the behavior of its states or the physical laws
that govern the subsystem (the “organism”) is non-repeating
within the expected Poincaré recurrence time T

p

.
We contend that non-trivial open-endedness must satisfy

both Definitions 1 and 2. For example, it should be immedi-
ately clear from Definition 2 that any non-innovative behav-
ior cannot be open-ended. Furthermore, the trivial examples
mentioned earlier are excluded from satisfying both defini-
tions. For example, some non-bounded systems could in
principle satisfy Definition 2 but not Definition 1, since their
dynamics are equivalent to an isolated system (they are not
innovative). In order to meet both definitions, a system must
be embedded in a larger universe by having semi-permeable
boundaries.

For deterministic systems, open-ended evolution can only
ever be an attribute of a subsystem and not globally, as the
full system u will always be limited by the Poincaré re-
currence theorem.This conceptual step might seem trivial,
but here we must emphasize the partition of subsystems and
their relative timescales to the global system in which they
are embedded. We suggest the timescale of a subsystem
embedded in global dynamics operates on a timescale that
is identical to an isolated system of the same size. Open-
endedness is only realized when timescales are apportioned
according to their isolated equivalents.

Without loss of generality, we test these definitions in a
modified one-dimensional cellular automata (CA) universe
that is capable of demonstrating fully open systems, fully
closed systems, and systems that are in-between. Since CA
are a common model for complex systems, they are well-
studied and provide a tractable means for applying our defi-
nitions.

Experiment
While traditional elementary cellular automata evolve ac-
cording to a fixed dynamical rule, the three CA variants pre-
sented here evolve according to explicitly time-dependent

rules, where the time dependence takes on different func-
tional forms according to how open the system is. The
first (Case I) evolves rules deterministically as a function

of the current state of the entire system thereby implement-
ing state-dependent rules, and thus is self-referential. Case
I CA is an example of a system that has semi-permeable
boundaries since it depends on its own state and the state of
a second, separate CA. The second type (Case II) allows the
rules to evolve deterministically as a function of time, but
this evolution is not a function of the state. It is completely
open to driven changes by allowing the rule to change as a
function of a second, separate CA only. In the final variant
(Case III), rule evolution is stochastic. Like Case II CA, it is
completely open, but the changes are not driven by another
external CA.

To quantify the presence of open-ended evolution in each
system, we measure the time it takes for a system to repeat
in both the rules and the states. If this time is greater than the
Poincarè recurrence time for an equivalent, isolated system
(Definition 2) while also being innovative (Definition 1), the
system is considered to exhibit open-ended evolution. In
addition, we measured the compressibility of such system
dynamics and their sensitivity to initial conditions although
our definitions do not depend on these complexity measures.

Results
For the smaller system sizes explored in depth, the majority
of all executions of all three CA variants were innovative by
Definition 1. In addition, the percent of organisms that were
found to be innovative increased as a function of CA size.
The fraction of OEE cases observed in our statistical sam-
ples for each size confirms that indeed larger environments
are much more robust generators of a larger fraction of OEE
cases for organisms of fixed width.

It is worth mentioning that satisfying the criterion for
open-ended evolution, per Definition 2, necessitates that
complex systems process information on different time
scales. This does not suggest that closed, deterministic sys-
tems will never repeat, as often posed as an argument against
the possibility of attaining OEE in a fully deterministic
(closed) universe. Instead, it suggests that complex systems
operate on multiple spatial and temporal scales, and OEE
is possible for some of these spatiotemporal scales through
deterministic and bounded processes. The results therefore
connect two hallmarks of life, by demonstrating that self-
reference may be explicitly linked to a robust mechanism
for generating OEE. Both hallmarks can emerge from sim-
ple rules whose dynamics are otherwise unsurprising with-
out multiple layers of information processing.

References
[1] Hector Zenil, A Computable Universe, World Scientific
Publishing, 2013.
[2] Nicholas Guttenberg and Nigel Goldenfeld, Cascade of

Complexity in Evolving Predator-Prey Dynamics, Physical
Review Letters, 100, 058102, 2008.


