Open-endedness and Novelty in Evolution

Wolfgang Banzhaf
Computer Science
Memorial University of Newfoundland

Ac

Workshop on Open-ended

I I Participants(some via Skype)

B. Baumgaertner
Guillaume Beslon
Rene Doursat
James A. Foster
Barry McMullin
Vinicius de Melo
Thomas Miconi
Lee Spector
Susan Stepney
Roger White
myself

Result

Defining and Simulating Open-Ended Novelty: Requirements, Guidelines, and Challenges

Wolfgang Banzhaf¹, Bert Baumgaertner², Guillaume Beslon³, Rene Doursat⁴, James A. Foster², Barry McMullin⁵, Vinicius Veloso de Melo^{*1}, Thomas Miconi⁶, Lee Spector⁷, Susan Stepney⁸ and Roger White⁹

¹Department of Computer Science, Memorial University of Newfoundland, St. John's, NL, A1B 3X5, Canada
²Department of Biological Sciences and Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Idaho, USA
³Université de Lyon, INSA-Lyon, INRIA Beagle, CNRS LIRIS UMR5205, Villeurbanne, France
⁴BioEmergences Lab (UPS3674), CNRS Gif-sur-Yvette, and Complex Systems Institue, Paris, France
⁵CUD

⁶The Neurosciences Institute, La Jolla, CA, USA
⁷Cognitive Science, Hampshire College, Amherst, MA USA 01002
⁸Department of Computer Science, and York Centre for Complex Systems Analysis, University of York, YO10 5DD, UK
⁹Department of Geography, Memorial University of Newfoundland, St. John's, NL, A1B 3X5, Canada

April 17, 2015

Abstract

The open-endedness of a system is often defined as a continual production of novelty. Here we pin down this concept more fully by defining several classes of novelty and innovation that a system may exhibit. This leads to a definition of levels of structure in a systems model. From there, we define a rachitecture suitable for building simulations of open-ended novelty-generating systems. We also state some challenges for the community.

^{*}On leave from Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil

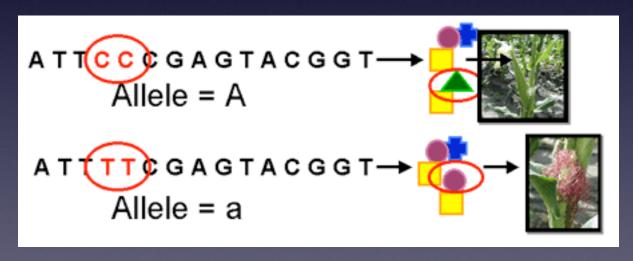
What is OEE?

- OEE = Continuous creation of novelty
- OEE = Continuous increase in complexity

- Effective OEE = Inexhaustible creation of novelty
- Effective OEE = Inexhaustible potential increase in complexity

OEE = Boundless diversity

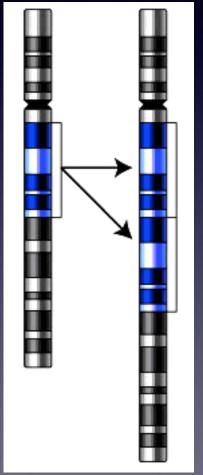
Novelty


- Specific type of change in and of a model
- Meta-model to describe model
- Model: Systems with entities, organized into levels
- Meta-model: Describes the level structure
- Change and time

Types of Novelty

- Type 0 Novelty: *Variation* = Novelty within a model
- Type I Novelty: Innovation = Novelty that changes the model
 - Ia Dimensional Innovation = Change in size/structure of space
 - Ib Type Innovation = New types of entities
- Type 2 Novelty: Emergence = Changes the meta-model
 - 2a Transition = Addition of a new level
 - 2b Major Transition = Entities at new level are units of reproduction

Example: Type 0 - Variation Novelty within a model


Changing a gene to a different allele

Plant & Soil Sciences eLibrary, 2015

Example: Type Ia - Dimensional Innovation Novelty that changes the model

Gene duplication

Wikipedia

Example: Type 2a - Transition Novelty that changes the meta-model

Ecosystem formation

Wikipedia: Inside of Biosphere 2

Novelty & Complexity

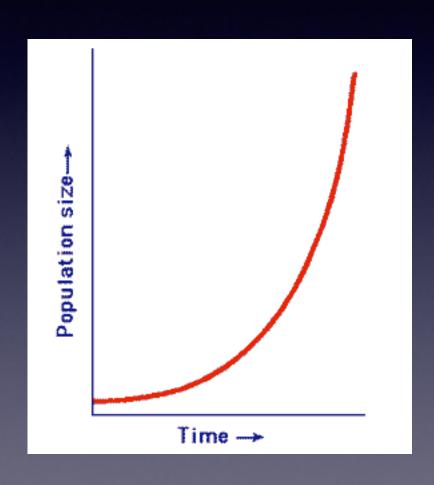
- Combinatorial spaces of a given dimension are exhaustible
- The Universe is a combinatorial space though a large one (10^40 time units x 10^80 particles = 10^120)
- Bit strings of length 400 bits are of comparable size

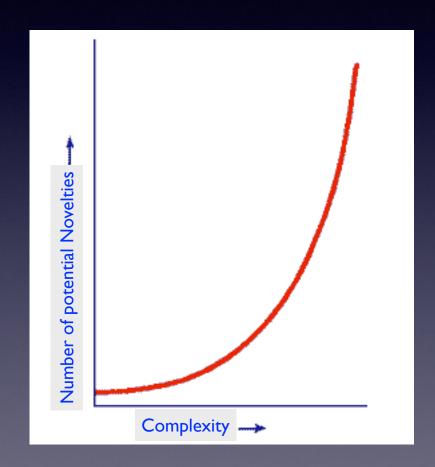
Is Novelty Sufficient for OEE?

"No" at any level of complexity:

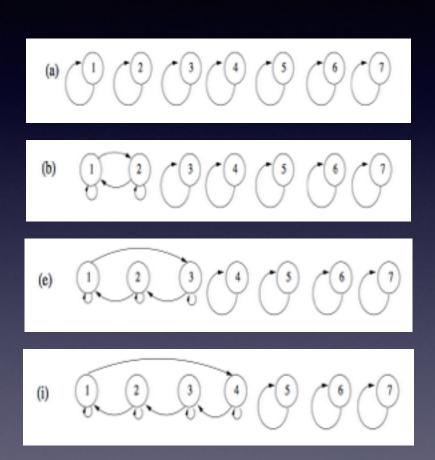
 The number of novelties goes to zero as search time goes to infinity

"Yes" if complexity can grow:

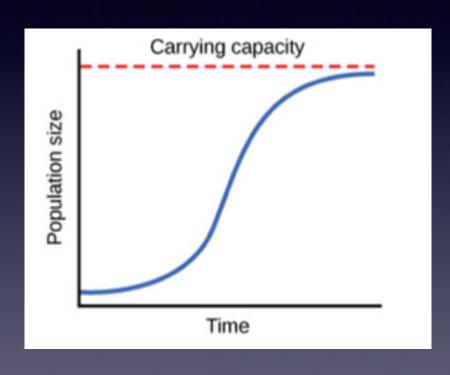

 Number of realizations (and therefore of novelties) grows exponentially with complexity

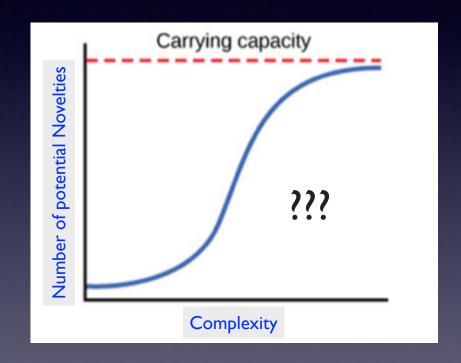

What is the driving force for OEE?

Natural Selection


- Amplification (exponential growth of population with time)
- Competition due to resource constraints

Time & Complexity




More complex systems seem to evolve faster!

- Simple model of competing (autocatalytic) entities
- Competition settles faster the more cooperation among entities
- Speed pushes for higher complexity

Is there a limit?

Evolution in Action

Change of perspective:

- From individuals that compete against each other for food
- to points in possibility space (eg. novelties) that compete for occupation by individuals
- Required is a sufficient number of individuals to compete for these novelties
- Resource limitation (matter in the universe) leads to limit on the number of levels that can be populated
- Search will be path-based, rather than volume-based in these possibility spaces
- Therefore the relevance of "the adjacent possible"
- Note: Novelty search is volume-based and not effective

References

- E. Coen, *Cells to Civilizations*, Princeton U Press, 2012
- W. Banzhaf et al., Defining and Simulating Open-Ended Evolution, preprint, to be published, 2015
- J. Maynard Smith and E. Szathmary, The Major Transitions in Evolution, OUP, 1997
- W. Banzhaf, On the Dynamics of Competition in a simple Artificial Chemistry, Nonlinear Phenomena in Complex Systems, 5 (2002) 318 324

Questions?